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On monoparametric families of orbits sufficient for 
integrability of planar potentials with linear or 
quadratic invariants 

S Ichtiaroglou and E Meletlidou 
Department of Physics, University of Thessaloniki, 54006, Greece 

Received 9 January 1990 

Abstract. By combining Darboux’s results on the direct construction of integrable systems 
with results from the inverse problem of dynamics, we prove that if a planar potential 
admits a monoparametric family of conic sections with constant focal distance or a family 
of confocal parabolas, it is integrable and the second invariant is quadratic in the moments, 
while the existence of a family of straight lines, either parallel or interesecting at one point 
also suffices for integrability, the second invariant being linear in the momenta. 

1. Introduction 

It is known-although never to our knowledge explicitly stated-that if a planar 
Hamiltonian of the form 

H = 3 P’x + P;) + V(X, Y ) 

r2 = x2 + y 2  = constant 

(1) 

admits the monoparametric family of circular orbits 

(2) 

then it is integrable. This conclusion may be drawn easily by combining results of the 
inverse problem of dynamics with Darboux’s (1901) results on the direct construction 
of integrable potentials possessing a second integral of motion quadratic in the 
momenta. More specifically, it is known that all potentials of the form 

V( r, e )  = h( I )  + r -2g(  e )  (3) 
where r, 8 are polar coordinates and h, g are arbitrary functions, are integrable, the 
second integral being 

I = (XP, - Y P J 2 + 2 g ( e )  (4) 

while at the same time the form (3) is the most general form for a potential which 
admits the family of circular orbits (2). This latter result was obtained by Broucke 
and Lass (1976) as an application of Joukovsky’s theorem (Wittaker 1944, p 109) and 
by Bozis and Mertens (1985). 

The aim of this paper is to determine other cases in which the existence of a 
monoparametric family of orbits 

f ( x ,  y )  = constant ( 5 )  
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in a planar Hamiltonian system guarantees its integrability. In such cases, information 
on the geometry of the orbits in a system, which can be provided by observation, may 
reveal information about its integrability. 

In the next two sections we briefly present some known results on the construction 
of integrable potentials by Darboux’s method and on the inverse problem of dynamics 
respectively. Then, combining these results, we show that if one of the following 
monoparametric families of conic sections (modulo translations and/or rotations): 

x 2  y2 -+-- -1  
A A - c  

or 

r(1 f sin e) = A (7) 
is admitted by a planar Hamiltonian system, then the system is integrable, the second 
integral of motion being quadratic in the momenta. 

In equations (6) and (7) A is the parameter, while c in ( 6 )  is any preassigned 
constant which does not vary within the family. The particular case of circular orbits 
( 2 )  is included in (6) and corresponds to c = 0. 

In section 5 a degenerate case is examined and it is shown that if one of the 
monoparametric families of straight lines 

y + c x = A  x / y  = A 

is admitted by a potential V ( x ,  y )  then the system is integrable. In this case the potential 
is one dimensional or central, respectively, and the second integral of motion is linear 
in the momenta and corresponds to a linear or angular momentum. 

2. Potentials possessing integrals of motion quadratic in the momenta 

The general form of the integrable planar potentials which possess a second integral 
quadratic in the momenta has been obtained by Darboux (1901), except for two 
degenerate cases, presented recently by Dorizzi et a1 (1983) and Ankiewicz and Pask 
(1983). Darboux’s result is also presented in Whittaker (1944, p 331). We briefly 
present here the main conclusion. 

In order for a planar potential V ( x , y )  to possess a second integral quadratic in 
the momenta it is necessary and sufficient for V to be a solution of one of the following 
equations (modulo translations and/or rotations): 

xy ( v,, - v, ) + ( y - x2 + c ) v,, + 3y v, - 3 x v, = 0 

x( v,, - V,) + 2yV, + 3 v, = 0 

vxy = 0 

where subscripts in V denote partial differentiation. In the case (8), if c # 0, V is of 
the form 

v= ( h ( u )  - g(u))/(u2 - u 2 )  

2u2 = x 2 +  y 2  + c + [ (x2+y2+  c)’ - 4CX””’ 

2u2 = x’ + y 2  + c - [ (x2+y’+  c y -  4CX’]’’* 

where 
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and the second integral is 

I = ( x p y - y p x ) 2 + c p S , + 2 ( u 2 h ( u ) - u 2 g ( u ) ) / ( u 2 - u 2 )  

while for c = 0, V is of the form (3), I being given by (4). 
In the case (9) V is of the form 
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(13) 

while the degenerate case (10) corresponds to 

with 

I = p:+2h(x). 

In all cases, h and g are arbitrary functions of their respective arguments. 

3. Potentials which produce a given monoparametric family of orbits 

It is known that the potentials V ( x ,  y )  which admit the monoparametric family of orbits 

f ( x ,  y )  = constant = A (18) 

may be determined as solutions of Szebehely’s equation (Szebehely (1974), see also 
Puel (1984)), which may be written in the form 

2 r  v, + y vy +y ( E  - V )  = 0 
l + Y  

(19) 

where y and r depend only on the family (18) and are given by 

Y =L/L r = YYX - Y y  (20) 

where E = E(f)  is the constant energy along each orbit of family (18). In order to 
solve Szebehely’s equation (19), one must define in advance the function E(f), i.e. 
one must know how the energy varies within the family. In order to obtain a partial 
differential equation for the general form of the potentials V ( x , y )  which admit the 
family of orbits (18), one may eliminate E from (19) as follows. Since E depends 
only on f, we have 

Ex = EfL 

Ey = YE,. (21) 

Ey = EfL 
that is 

Solving equation (19) with respect to E and inserting it into (21), after some tedious 
but straightforward calculations we obtain the equation 

(v,, - v,,) - xV,, + AV, +pVy = 0 (22) 
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where x ,  A, p depend only on the family ( 1 8 )  and are given by the equations 

x = ( 1  - Y 2 ) / Y  (23 a 1 
A =(-Yrx+r,)/Yr ( 2 3 b )  

p = A y + 3 r / y .  ( 2 3 c )  
Equation ( 2 2 )  was first obtained by Bozis (1984)  and also by Bozis and Mertens 

(1985)  as a special case of an equation for a potential producing a family of orbits on 
a given surface. The general solution of equation ( 2 2 )  for a particular f includes two 
arbitrary functions and corresponds to the most general form of a potential V ( x ,  y )  
compatible with the monoparametric family of orbits ( 1 8 ) .  

4. Families of orbits sufficient for integrability 

Let again 

f ( x ,  y )  =constant = A 

be a monoparametric family of orbits. The general solution of equation ( 2 2 )  for this 
particular f corresponds to the most general form of the potential compatible with the 
above family. If at the same time equation ( 2 2 )  is identical to one of equations (8), 
( 9 )  or (lo),  these potentials are integrable and the presence of this family of orbits in 
a planar potential suffices for its integrability. In the following, we will determine all 
the families of orbits for which the above remark is true. 

Case (al) ,  c # U. In order for equation ( 2 2 )  to be identical to equation (8), the following 
relations must hold: 

x = ( x 2 - y 2 - c ) / x y  A = 3 / x  p = - 3 / y .  ( 2 4 )  

y = f { - ( x 2 -  y 2 -  c ) / x y  * [ ( x ’ -  y 2  - c)2/x2y2+4]1’2} ( 2 5 a )  

r = - Y ( Y Y + x ) l x Y  ( 2 5 b )  

- y r x  +r, = 3 r  r / x .  ( 2 5 c )  

If for y given by equation (25a),  equations ( 2 5 b )  and (25c) are true, then such a 
family of orbits does exist and the corresponding function f can be obtained as a 
solution of equation ( 2 0 a ) ,  i.e. 

By taking into account equations ( 2 3 ) ,  equations ( 2 4 )  become 

f y  - YL. = 0. ( 2 6 )  

Differentiating ( 2 5 b )  with respect to x and y ,  is easy to show that equation ( 2 5 c )  
is valid, while it takes more elaborate algebra to show that ( 2 5 b )  is also true. In order 
to solve equation ( 2 6 )  for y given by ( 2 5 a ) ,  we perform the transformation to U, v 
given by equations ( 1 2 ) .  Then y takes the forms 

y = U (  c - ff2)”*/ ff ( U 2  - c)1’2 

y = -ff  ( U *  - C ) y U (  c - f f 2 ) ” 2  

or 
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and equation (26) becomes simply 

f u  = o  or f v = O  

so the corresponding family is given by the equation 

f = r2 + c * [( r2 + c)’ - ~ C X ~ ] ” ~  = constant = 2A. 

Equation (27) can also be written in the form 

x’ y2 -+-- - 1. 
A A - c  

In (28), c is a pre-assigned constant which does not vary within the family while A is 
the parameter. Family (28) corresponds to conic sections with a constant focal distance 
21 c 11’’. 

Case (a2), c = 0. In this case the transformation (12) cannot be applied. For c = 0, 
the first equation of (24) yields the solutions 

Y = Y l x  or y = -x/ y. 

The second solution is unacceptable since it corresponds to r = 0 and in this case the 
procedure for deriving equation (22) cannot be applied. The degenerate case r = 0 
will be treated separately in the next section. It can be easily checked that the first 
solution satisfies the two remaining equations (24). Equation (26) then yields the 
monoparametric family of circular orbits 

x 2 +  y2 = constant = A 

which may be included in (28) for c = 0. 

Case (b). In this case we identify equation (22) with equation (9) and obtain the 
relations 

x = -2y/x A = 3 / x  p =o.  (29) 

Y = (Y  * r ) / x  (30) 

The first of equations (29) yields 

and it can be shown by straightforward algebra that the other two equations are true 
for y given by (30). The corresponding family of orbits may be determined by equation 
(26), which in this case, and in polar coordinates, has the form 

1 7  sin 8 
cos e *tfr+- f e  = o  

and yields the family of confocal parabolas 

r(l*sin @ ) = A .  

It is impossible to identify equation (22) with equation (10) in the degenerate case. 

5. The degenerate case r = O  

Function r is proportional to the curvature of the orbits ( h e 1  1984) so this case 
corresponds to monoparametric families of straight lines. 
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In this case, the general form of a potential compatible with a monoparametric 
family of orbits with r = 0 is obtained by the general solution of Szebehely’s equation 
(19), which now becomes 

f,VX +f,v, = 0. (32) 

On the other hand, it is known (Hietarinta 1986, p 27) that the necessary and 
sufficient condition for a potential V ( x ,  y )  to be integrable with a second integral of 
motion linear in the momenta is to be a solution of the equation 

(ay + C) V, + ( -ax  + b )  V, = 0 (33) 

where a, b and c are constants. We identify equation (32) with equation (33) and 
consider the following two cases. 

Case (a). (a = 0). In this case, without loss of generality we may take b = 1 and obtain 
the equation 

Y = & I f ,  = l / c  

y + cx = A. 

which gives r = 0 and corresponds to the parallel straight lines 

(34) 

In this case the potential is V = V (  cy - x )  and the second invariant is Z = p ,  + cp,. 

Case (b) (a # 0). We may perform a translation and take b = c = 0, while a can be put 
equal to 1 .  Identifying (33) with (32), we obtain 

Y =&If ,  = - X / Y  

x /  y = A. (35) 

which also corresponds to r = 0 and yields the family of straight lines 

The corresponding potential is central and I is the angular momentum. 

6. Conclusions 

It was shown in this paper that information about the geometry of the orbits in a 
planar Hamiltonian system may reveal information about its integrability. The existence 
of a monoparametric family of orbits in such a system may suffice for the system to 
be integrable. More specifically, if a planar potential V ( x ,  y )  admits one of the following 
families of conic sections: 

or one of the families of straight lines 

y + c x = A  x l y  = A 

where c is a particular preassigned constant and A is the parameter, then the system 
is integrable, the second integral being quadratic in the momenta in the first case and 
linear in the second one. 
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This result was obtained by identifying Bozis-Mertens or Szebehely’s equations 
(22) or (19) with equations (8)  and (9) or (33), which correspond to sufficient conditions 
for the existence of a second integral of motion, quadratic or linear in the momenta 
respectively. 

The same method may be applied for integrability with a second integral of degree 
higher than 2 in the momenta, but the results on the construction of such integrable 
potentials are too incomplete (e.g. Hietarinta 1986, p 36 ff) for a definite conclusion 
to be drawn. 
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